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Solitons in models of an a-helix: influence of symmetry 

B Tosict, Lj Maskovict, M Skrinjart, D Kaport and G Knezevict 
t Institute of Physics. Faculty of Sciences. 21WO Novi Sad, Yugoslavia 
$ Institute of Physics. Universityof Sarajevo, Yugoslavia 

Received 15 August 1990 

Abstract. Solitons in an e-helix are studied within the framework of a modified Davydov 
model which takes into account third-order axis symmetry. It is shown that antisymmetric 
solitons with one vanishing amplitude do not satisfy this demand. This result is confirmed by 
perturbational calculation for the static solitons. 

1. Introduction 

The problem of solitons in an a-helix has been extensively treated (Davydov 1982a, b, 
1985, Scott 1982a, b). (We are aware that there are many other papers, which neglect 
the structure of the a-helix and treat it  as a simple molecular chain and we shall not 
quote them.) The reason for the great interest is the idea that the soliton mechanism 
might offer an explanation for important biological processes related to the energy 
transfer in proteins. Our aim here is to show that some of the often-quoted results are 
in fact not compatible with the symmetry of the system. 

The organization of the paper is as follows: in section 2 we describe in detail the 
model of the a-helix that is the subject of our study and in section 3 we outline the 
common treatment, emphasizing some more important physical properties. Section 4 is 
dedicated to a different approach which enables one to exploit the symmetry of the 
problem, and the essential results of this section are confirmed in the subsequent section 
by perturbational calculation. In the concluding section, we summarize our results and 
indicate the differences with respect to the results of other workers. 

2. Davydov’s model of the &-helix 

The very complicated structure of a-proteins requires some simplifications. Following 
Davydov (1982a, b, 1985), we shall study only the excitations of peptide groups (PGS), 
the so-called amide-I excitations. 

We know that PGS are distributed along the a-helix in such a way as to form three 
chains (‘spines’) while the PGS within the chain are connected by hydrogen bonds. We 
shall treat these three chains as one-dimensional structures distributed in the space in 
such a way that the nearest neighbours to each PG lie on different chains. PGS are 
distributed to form the helix and the most simple idea is that of a third-order screw axis, 
although from the crystallographic point of view the situation is more complicated. 
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Figure 1. Structures of ( a )  the a-helix and ( b )  the simplified model with disks. 

Davydov’s model supposes that three nearest neighbours are distributed at equal 
distances on the horizontal planes orthogonal to helix axis, and such combinations are 
repeated with the period do. Scott (1982b) describes this structure in the following way: 
it ‘does not represent a true helical structure but rather ‘disks’ connected by three 
“springs”’. We shall only study this model (figure 1) at the moment without the modi- 
fications introduced later. 

The next step is to describe the excitations. We accept the usual two-level scheme 
which implies that only the first excited state is important. In that case the creation and 
annihilation of excitations (vibrons) are described by Pauli operators but, in the spirit 
of the usual approach, we shall suppose that they satisfy the boson relations 

[B, , ,  &@I = ,-L.dm,# [ E “ , ,  B,pI = 0. (2.1) 

Here n denotes the site along the axis of the helix which describes the position of the 
‘disk‘, and cr = 1, 2, 3 denotes the chains (spines). &‘ are creation operators and E 
annihilation operators. 

We shall suppose that the lattice is not rigid; so interaction with phonons exists. The 
other possibility of helix torsion will be neglected here. The complete Hamiltonian of 
the system can be written as 
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H = H" + HPh + HFPh (2 .2)  

(2.3) 

(2.4) 

(2.5) 

where 
= &$dl + H V d )  

&Ld) = AEB:wBna - JEB:e(L?n+,m + Bn-]*) 

H V d )  = L c (B:J?"e+, + B:e+lB"m). 
Jlc "a 

no 

The summation over n includes the whole chain with periodic boundary conditions 
included, while 01 takes the values 1 , 2  and 3, which corresponds to the three-sublattice 
system. A is the excitation energy of the single PG and J is the resonant energy between 
the nearest neighbours within the same chain. L describes the interaction between the 
nearest neighbours within the same cell but belonging to different chains. The fact that 
L takes the samevaluesfor all threeinteractionsreflects,partly, the helicoidal symmetry. 

The more important symmetry property of the model proposed is contained in the 
fact that the correct developed form of the summation over cu in (2.5) can be obtained 
only by the substitution 4 + 1. This means that the Hamiltonian (2.3) has to be invariant 
with respect to the transformation: 

cu+a+3v  v = 0, r 1 . 2 2  (2 .6)  

Btte = B n m + 3 v  v = o , 2  1,&2, .  . . . (2.7) 

having the direct consequence that 

The symmetry property quoted followsfrom the indistinguishability Of PGS belonging 
to the same suhlattice I, I1 and 111 (see figure l(b)). Because of this, the permutation of 
two PGS belonging to the same suhlattice cannot change the physical properties of the 
system. The PGS belonging to  different sublattices are indistinguishable also, but their 
permutation disturbs the initial assumption about a three-sublattice system and, conse- 
quently, is not allowed in the framework of the model proposed. 

The consequences of the symmetry condition (2.7) will be.discussed later. Here we 
continue with the explanations concerning the Hamiltonian (2.2). 

The system of phonons is described by the Hamiltonian 

(2.8) 
1 

f i p b  = t 2 (%e?,, + Q(%, - 4-  I.)'). 
"0 

U,, andp,, are the displacement and momentum operators of PG on the nth site in the 
crth chain. M is the mass of the PG and Q is the force constant. 

Finally, the coupling between vibrons and phonons will be described here by both 
'strong' and 'weak' coupling, as can be seen from the introduction of two coupling 
constantsx, andxz: 

f L P h  = x i  E &&%@"+Le - 4-10) + x 2  E ( & A I C  
nm "Or 

+ B ; - l e B n e ) ( L  - & - I , ) .  (2.9) 

Before starting the calculation, let us comment on our approach. The general idea 
is that the best results are obtained in the variational approach (Skrinjar et a1 1988, 
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Zhangeta[l988,andthereare twopossiblechoicesoftrialfunction, both first introduced 
by Davydov. We shall use current notation (Brown eta1 1986). 

The D, unsatz denotes the trial function which is the direct product of single-particle 
vibron wavefunctions and a phonon coherent state. The D, ansulz is more complicated 
and cannot be factorized in a simple manner. It has an important advantage with respect 
totheD2unsurz,namely that it manages toreproduce all the well known,exactlysoluble 
limitingcases. Recently, another approach usinga certain verysuitableclassof D I states 
was also proposed (Brown and Ivii. 1989,1990). 

We have decided to accept the Dz ansurz approach in this paper, for several reasons. 
First of all, the calculations for the a-helix are already rather complicated. We are 
interested in the influence of symmetry and we do not want to introduce additional 
complications which would prevent us fromseparatingsymmetry effectsfrom the effects 
of a more complicated ansurz. We would like to compare our results with previous 
calculations and numerical simulations which were all performed using the D, unsutz. 
For all these reasons, we shall not discuss the numerous references presenting various 
calculationsfor the singlechain andonly combiningthem with a-helix parameter sat the 
end of the calculation. 

3. Standard approach 

We shall review here Davydov's standard approach which will be applied consistently. 
Our initial point is the Hamiltonian given by (2 .2) .  Once again, we stress the cyclic 
property of the summation over CY, given by (2.7). 

The trial function will be taken in the usual D2 ansulz form: 

(3.1) 

Here 10)denotesthedirect productof the vibron andphonongroundstates.The operator 
S(t) has the anti-Hermitian property 

(3.2) 

where ync(t) andn,,(t) are real functions. Theactionofexp[~(~)]on~O)phgive~acoherent 
phonon state. The normalization condition for lY(r)) turns into 

C lano(t)12 = 1. (3.3) 
"e 

Further detailsofthe procedure arewell knownin the theoryofsolitonsand therefore 

The equation 
it will be discussed very briefly. 

ih(Ja,,/ar) = ( J / ~ u ; ~ , )  ( W f i l w ( t ) )  (3.4) 
has to be combined with the equations of motion for operators h,, and OnW. averaged 
over states lq(t)). The continuum approximation 

qnlln(l) O&) -C du(dQ?,/ax) + ldg(a20w/Jx2) (3.5) 
where O stands for a and y and du is the lattice constant, applied to the expressions 
obtained leads to the equation 
ifi(aa,/at) = (C + A - 2 J ) a ,  - df(a2u,/Jx2) + L(U,+~ + a e . , )  - Gla,lza, = 0 

(3.6) 
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where 

a2y,/at2 - v:a?i,/ax2 = [(2x/M)/(a/ax)] la,/* 

x = d o k ,  + X?) 
Vi = dZQ/M 

The normalizing condition (3.3) becomes 

uk = 2daJk/h 

s = Uk/V0 G 5 4xz/MVi(l - 9). 

while the symmetry condition (2.7) becomes 

a,(x,t)=a,+,,(x,O. 

These equations in fact already presume certain particular solutions, because they 

Y d L  4 3 Y“ E = x - o , t  (3.10) 

Ia&,t)12 = la,I2(E). (3.11) 

are derived for the case of very particular dependence on time and space variable: 

We shall now look for the solution of (3.10) in the form 

a,(x,t) =Amf(E)exp(ikx - iwt). (3.12) 

A, is the complex amplitude (this is a generalization with respect to standard treat- 
ment) characteristic for given (Y, while f(5) is the real function independent on a. k was 
introduced through velocity uk (3.7) and E = hw is the soliton energy. 

Introducing (3.12) into (3.6) and using (3.7) to eliminate first derivatives df/dE, we 
obtain 

doLJAe(dZf/dE2)=(Eo -E)A,f+ L(A,+, + A e - i ) f -  GIAm12A.f (3.13) 

where 

E , = C +  A - 2 J + d i J k Z .  

Let us look for the solution of (3.13) in the form 

RE) = ( ~ o ~ / ~ ) ’ ” [ ~ / c ~ ~ ~ ( P E ) I  

where p is an undetermined parameter, independent c 
(Y. Substitution of (3.15) into (3.13) leads to the set of equations 

Y since f is i 1 in 

A,+* +A,-, + YA, = O  U =  1 , 2 , 3 , 4 - + 1 , 0 + 3  

with 

Y = (E, - E - diJp2)/L 

(3.14) 

(3.15) 

pendent of 

(3.16) 

(3.17) 
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and 
[(G/4doJ) IAe12 -PIA= =O. 

The normalizing condition becomes 

(3.18) 

[Ail2 + IA2I2 + IA,I2 = 1. (3.19) 

The fact that p is (Y independent implies, according to (3.18), that IA,l2 are (Y 

independent, too. This condition restricts very severely the family of possible solutions 
of (3.16). When this is taken into account, together with the symmetry condition (3.9) 
and definition of the amplitudef(3.12), only solutions of the type 

A,, = A  exp[ip(h/3)@] p = 0, *I, 2 2  A # O  (3.20) 

have a physical meaning. 
Thehomogeneoussystem(3.16) hasnon-trivialsolutionsfor Y ,  = -2and Y ,  = Y ,  = 

1. Itcan beeasilyshown that,for Y = -2, IhereexistsonlyonesetofA-valuessatisfying 
(3.19): 

=(A2)i  = ( A , ) ,  = 1/fi. (3.21) 

The corresponding soliton energy is 

E ,  = A - 25 + fiZo:/4d&i + 2L 

- [x~ /~J (Mu; ) ' ] [~  - 1(1 t s2)/(1 - s2)][1/(1 - s ~ ) ~ ] .  (3.22) 

For Y = l,thesyslem(3.16)reducestoAl + A 2  + A, = 0.Theonlypossiblesolution 
satisfying (3.19) is 

=exp( i i / 3 ) / f i  (A2)2 = e x p ( - i h / 3 ) / d  ' (A3j2 = l / ~  

(3.23) 
with the energy 

E 2 = A  - 2 J + h 2 u : / 4 d ~ J - L - [ X ' / 9 J ( M ~ ; ) 2 ] [ l  -3(1 +s2)/(l  - s 2 ) ]  

x [l/(l - S y ] .  (3.24) 

On the other hand. there exists another solution with A-values which are (Y inde- 
pendent: 

A l = - A 2 = l / ~  ~ A,=O 

but which does not satisfy the symmetry condition (3.19). This solution proposed by 
Davydov (1982a) is usually called the antisymmetricsoliton. In the spirit of the present 
discussion, we treat this solution as purely mathematical, satisfying (3,16)-(3.19), but 
not satisfying the essential physical symmetry condition (3.19). 

4. Influence of symmetry 

In this section we wish to show that one can reproduce most of the results from the 
previous section in a stricter manner, but using the conditions of third-order symmetry. 
This condition imposes a severe restriction on the results. 
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Let us start from equation (3.6) for Q,(x, I): 

~ 
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ifi(an,/at) = (C + A - 2J)a, - diJ(a2n,/ax*) + L(U,+~  + a,-]) - Gla,/za, = 0 

(4.1) 

where we have used the definition of G (3.7). 

the following way: 
We shall now try to solve this equation demanding an overall dependence on cx in 

am(x, r )  =f,(E) exp(ikx - iof) E = x  - U l f .  (4.2) 

uk is defined by (3.7). The normalizing condition (3.8) now becomes 
DF 

d.x I f J  = do. (4.3) 

Note that heref, is a complex function. The substitution of (4.2) into (4.1) gives 

d2f,/d5= ofn - 2Qlfm12fm + (L /d ;J ) ( f ,+ ,  +fb-i) (4.4) 

0 = [(C + A - 25 + diJk)’ - E]/d;J (4.5Q) 

P = G/2Jdg. (4.56) 

The condition of third-order symmetry demands that f, must be a periodic function 

(4.6) 

of cx with period equal to 3. We shall look for the solutions in the form 

p = 0, -cl, 5 2 , .  . . fkP)((5) = F(E) exp[i(2pd3)4 

where F(5) is the real function. For anyp, one has 

f % I ( E )  + f i @ l ( E )  = 2CPfLP’(p‘(5) c, = COS[p(h/3)]. (4.7) 

It is important to note that, for p = 0, + l ,  22,  . . . , C, can take only two values *1 
(p = 0, +3, - ~ 6 ,  . , .) and - B  (p  = 2 1 ,  +2. 24, + 5 , .  . .). If we define 

0, = 0 + (2L/d;J)C, ( 4 4  

equation (4.4) turns into 

dZF/dtZ = 8, F - 2QF3 

while the normalizing condition (4.3) becomes 

(4.9) 

(4.10) 

Using standard procedures, one obtains the following energies corresponding to 

E(’) = Eo + 2LC, - G2/144J (4.11) 

It can be easily confirmed that we obtain not only the same energies as in the previous 
section but also the same amplitudes, following from (4.6). 

normalized solutions of (4.9): 

(C, = +l; -1). 
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5. Perturbational calculation 

We wish to demonstrate in this section a different approach based on the perturbation 
calculation. The idea is that one can diagonalize a certain part of the Hamiltonian (2.2)- 
(2.5) and then look for the energies of the system in terms of new 'hybrid' excitations. 

Let us hrst look at the vibron part f i v  of the Hamiltonian (2.3) only. We shall perform 
the following unitary transformation: 

where QeB are the elements of the unitary matrix Q chosen in such a way to diagonalize 
fiv in the momentum space. The explicit form is 

QG4 = (l/v3exP(icp*d (5 4 

(One should note that the columns of this matrix are the amplitudes obtained by Scott 
(1982a, b) in his analysis of the coupled non-linear Schrodinger equation.) 

The expression If, will be given in direct space, because it is easier to derive the 
continuum limit in this way: 

A l = A + 2 L  A? = A3 = A - L. (5.4b) 

Substituting (5.1) into (2.4) and (2.5) we note that, in A,, one can separate terms 
with equal indices and simplify the expressions by using the properties of the matrix 0. 
The final expression for the Hamiltonian can be written in the form 

fi = fi") + fi;;) + &g/ (5.5a) 

(5.5b) 
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We shall now study the excitations belonging to Hp) for a particular p. Let us 
construct the single-particle vibron trial function 

PpI(N = X ~ " 8 ( 0 & 8  IO) (5.9) 

E lU,8lZ = 1. (5.10) 

n 

which is normalized, so that 

Wecan write the Schrodinger equation for Iqg)) with the Hamiltonian fibo) and project 
it onto the direction (016,. After that, we average the result with the coherent phonon 
state 

IPS) exP[$J(9lIo),h (5.11) 

with 

The results are similar to those obtained in section 3; so we shall quote only the final 
results obtained after the continuum transition. 

Eb0)(k) = Ap + Jdak2 - &i.[X'/J(Mu~)'( l  -~')'][1 - 3(1 + s2)/(1 - s')] 

and the corresponding wavefunction is 

The zero-order energy is given by 

(5.13) 

(5.14) 

It should be noted that, except for wB and 66, nothing else depends on in the 
expression for lqg)( t ) ) .  

At this stage we face another problem: lqf)(t)) is not a stationary state. This opens 
up many problems and, in order to simplify our calculations, we shall discuss only the 
case of the stationary soliton U &  = 0. In this case, one can write 

(5. 15a) I@) (9) exp(-iwgr) I q ( O ) )  

(5.156) 

Now we can study the perturbing terms (5.7) and (5.8). We average them over 

IP) = I1 IP)P (5.16) 
B 

After the continuum transition we obtain 

(5.17) 

We have neglected here terms of the order dibJ(x)(dZ/dX2)b8(x) whose contribution 
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is much smaller. Here, we use the expression aylax  because one can show, by direct 
calculation that y,is nindependent. The above expression simplifies to 

The same procedure for fi$ leads to vanishing results owing to the unitary of the 
matrix 0; so the final expression for the Hamiltonian of the interaction is 

1 
X4 66(x)6 , (x ) .  4 1  

81 doJ (MU;)’(~ - s’)’ p dx  cosh’[(d&/Z)x] 
_L 

H,,, = = - -- 

(5.19) 

Let us look for the matrix elements of HLnt (5.19) between the functions 
Iplbo)), Since Ip1p)) (5.15) is diagonal in 666, andso is H,,, (5.19),it isobvious that V,, = 
Ofor n # p: 

dx dx’ dx“ 
1 2x6 v,, = v = Cqq) IH,,, IQ#’) = - - da ( M u ~ ) ~ J ~ ~ ’  

1 
cosh? [(d0sL/2)xJ cosh[(doS2/2)x’) cosh[(doS2/2)x”] 

X 

We note the following: in the first-order perturbation theory, there is no splitting of 
the degenerate level E2(0)  = E3(0). Also, there are no higher-order contributions; so, 
within the framework of accepted model, this is an exact result. The energy is 

E,(O) = A! - & - x “ / ( M u ~ ) ’ J  ( p =  1.2-3) 
(5.21) 

A , = A + 2 L  A2 = A3 = A - L. 

We can formulate our result in the following way: using a perturbation calculation, 
we have reproduced the result in the previous section, showing that there is no energy 
solution which would correspond to solitons with one vanishing amplitude. 

6. Discussion 

We wish to summarize here our main results: the most important information in the 
standard approach lies in equations (3.16)-(3.18). Let us repeat the fact that (3.18) 
allows only three possible types of the solutions: case (a) is solutions where all three 
amplitudes have equal moduli; case ( b )  is solutions with one vanishing amplitude and 
two having equal moduli; case (c) is a solution with two vanishing amplitudes. 

Case (c )  is not consistent with the system (3.16) because the vanishing of any two 
amplitudesleadsdefinitely to the vanishing of the thirdamplitude, too.Thisimplies that 
numerical simulation using this type of initial condition and giving non-vanishing results 
cannot be trusted, since our result is quite general. 

We have further shown that case ( b ) .  describing so-called ‘asymmetric solitons’, is 
not compatible with third-order symmetry which is implicitly assumed in Davydov’s 
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model of the a-helix. So we treat it as a purely mathematical artefact. It is important to 
note that our solutions refer only to the given model and that our aim was just to study 
Davydov’s model of the a-helix, which still does not say much about the real a-helix, or 
even improved models. 

Scott (1982a, b) usesadifferent approachfornumericalstudies. Hedefinesamodifed 
Davydov Hamiltonian which models more realistic couplings of the form 

iA,, = L(An2 + A n - L 3 )  + . . . . 
This is a more realistic model which takes into account helicoidal symmetry but is 

rather complicated to use for calculation; so it was the basis only for numerical cal- 
culations whose purpose was to study the threshold coupling. 

We think that analytical calculations with this modified Hamiltonian, or some of its 
versions would lead to important information concerning excitations in real &proteins. 
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